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Abstract—On large-scale graphs, many graph neural networks
are problematic in capturing long-range dependencies due to the
oversmoothing problem. Recently, Graph Equilibrium Models
(GEQs) arise as a promising solution to this issue. Their output
is the equilibrium of a fixed-point equation, which can be seen
as the result of iterating a GNN layer for infinite times, so that
they inherently have global receptive fields. However, to find the
equilibrium, GEQs require running costly full-batch root-finding
algorithms from scratch during each model update, which leads
to severe efficiency and scalability issues that prevent them from
scaling to large graphs. To address these limitations, we propose
VEQ, an efficient learning method to scale GEQs to large graphs.
Instead of initializing the equilibrium from scratch in full-batch
training, VEQ uses the latest equilibrium of in-batch nodes and
their 1-hop neighbors (dubbed Virtual Equilibrium) to accelerate
and calibrate the root-finding process in mini-batch training.
With virtual equilibrium as an informative prior, VEQ is able to
reach the equilibrium in fewer steps while still capturing global
dependencies. Theoretically, we provide convergence analysis for
the forward and backward pass of VEQ. Empirically, VEQ
significantly outperforms existing GEQs by a large margin (more
than 1.5%) on all benchmark datasets, with much less training
time and memory. Also, VEQ achieves competitive and even
superior performance to many highly engineered explicit GNNs
on large-scale benchmark datasets like ogbn-arxiv and ogbn-
products. VEQ shows that after we resolve the efficiency and
scalability issues, GEQs are indeed favorable on large graphs
due to their advantage of capturing long-range dependencies.

Index Terms—graph neural networks, deep equilibrium models

I. INTRODUCTION

Graph Neural Networks (GNNs) are powerful models for
graph mining [1]–[3], facilitating applications on learning
representations of graph-structured data, including social net-
works [4]–[7], knowledge bases [8]–[10], molecules [11]–[14],
etc. However, they are known to suffer from the oversmoothing
problem, i.e., more depth often results in a catastrophic drop in
performance [15]–[17]. Consequently, GNNs are often limited
to only a few hops of neighbors, e.g., 4-5. Thus, it is generally
hard for GNNs to capture long-range dependencies on large-
scale graphs.
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A new class of GNNs, dubbed Graph Equilibrium Models
(GEQs), recently rise to be a promising new solution to this
problem [18]–[20]. Instead of stacking multiple explicit GNN
layers, GEQs adopt a single implicit layer in the form of a
fixed-point equation. It can be shown that the solution to the
fixed-point equation, namely the equilibrium, is also the output
of iterating an explicit layer for infinite times. As a result,
an implicit layer has access to infinite hops of neighbors,
and GEQs could benefit from global receptive fields within
one layer. This key property renders GEQs very promising
when applied to large-scale graphs that require long-range
dependencies.

However, despite the recent progress [18]–[20], existing
GEQs have only been applied to small or medium graphs,
and are difficult to scale to large graphs. We notice that the
key obstacle lies in the iterative updates of the root-finding
algorithm when solving the fixed-point equation. First, the
equilibrium state is typically obtained via iterative root-finding
algorithms like Broyden’s method [21]. As the algorithms
usually start from a zero or random initialization, it could
take hundreds of steps to reach the equilibrium, which is
much more time-consuming than explicit GNNs involving
only several layers. Second, as solving the fixed-point equation
requires global receptive fields, every forward pass of GEQs
requires access to all input features and the entire adjacency
matrix. In other words, existing GEQs only accommodate full-
batch training, which dramatically increases the memory cost.
For large-scale graphs with millions of nodes, they cannot be
processed (or even stored) within one GPU, and thus existing
GEQs can hardly work. A simple walk-around is to adopt
mini-batch training of GEQs on subgraphs as in explicit GNNs
[22]–[24], but it will 1) sacrifice the key advantage of GEQs,
i.e., global receptive fields, and 2) introduce large deviations
to the estimated equilibrium.

Motivated by these challenges, we propose Virtual EQui-
librium model (VEQ), that could resolve the efficiency
and scalability issues of GEQs altogether. The core idea of
VEQ is to recycle the equilibrium calculated from previous
model updates. Utilizing them as an informative prior, we can
avoid finding equilibrium from scratch each time and enable
mini-batch GEQ training. On the one hand, since parameters
of GEQs only change slightly between model updates, the
previous equilibrium is close to the current one, which largely
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reduces the iteration number needed for root-finding. On the
other hand, we notice that the full-batch update of mini-
batch nodes only involves their 1-hop neighbors. Thus, we
further utilize previous equilibrium of these 1-hop neighbors to
provide global information and calibrate the local equilibrium
update in mini-batch training. As a result, VEQ could be both
efficient (with only a few root-finding iterations) and scal-
able (with only mini-batch nodes and their 1-hop neighbors).
Meanwhile, as the equilibrium is persistently updated along
the whole training process, VEQ still benefits from global
receptive fields. We summarize main contributions as follows:

• We analyze the limitations of existing GEQs from two
aspects: training inefficiency due to root-finding solvers
and equilibrium deterioration in mini-batch training.

• To address the two limitations, we propose VEQ, an
efficient and scalable GEQ that enjoys both fast root-
finding, small memory consumption and global receptive
fields.

• Empirically, VEQ outperforms existing GEQs by a large
margin (>1.5%) on all benchmark datasets, and achieves
state-of-the-art performance among explicit GNN base-
lines on large-scale graphs like ogbn-products.

II. GEQS AND THEIR LIMITATIONS

In this section, we first introduce the formulation of GEQs
in the context of node classification, and then discuss the
efficiency and scalability issues that prevent existing GEQs
from solving large-scale problems.

Notations Consider a general graph G = (V, E) with
node set V and edge set E , where |V| = n and |E| = m.
Denote the set of v’s neighbors in G as Nv . Denote the input
feature matrix as X ∈ Rn×d, where the i-th row corresponds
to the feature of the i-th node. Denote the adjacency matrix
as A ∈ Rn×n, where Au,v = 1 if edge (u, v) ∈ E , and
Au,v = 0 otherwise. Let D be the diagonal degree matrix of
A. Let Â = D− 1

2AD− 1
2 denote the symmetric normalized

adjacency matrix. For a feature z defined on nodes, z[v] and
z[B] denote the indexed feature(s) of the node v and the set
B ⊆ V , respectively. Let ⊗ denote the Kronecker product, and
let ⊕ denote the concatenation.

A. Background on Full-batch GEQs

Consider a node classification task, where each node v in
the graph G is associated with a label y. The goal of Graph
Neural Networks (GNNs) is to learn a good representation z
for each node, such that the label y can be easily predicted,
e.g., via a linear head. Different from explicit GNNs that stack
multiple layers, Graph Equilibrium Models (GEQs) achieve
this by solving a fixed-point equation, a.k.a. the implicit layer,
as follows:

Z = Φ(A,Z,X,θ). (1)

Here θ denotes layer parameters, and the solution Z ∈ Rn×p

is the equilibrium representations of all nodes. For instance,

an implicit analogy to the explicit GCN [4] is the following
IGNN layer [18],

Z = σ(ÂZW +XU), (2)

where W,U ∈ Rp×p are weight matrices, and σ is an activa-
tion function. The output Z is equivalent to the final output of
an infinite-depth explicit GNN, i.e., Z = limK→∞ ZK , where

Zk = σ(ÂZk−1W +XU), k = 1, . . . ,K. (3)

As a result, GEQs such as IGNN have access to infinite hops
of neighbors and thus enjoy global receptive fields.

To simplify the discussion, we abuse the notation a bit and
adopt the vectorized form as follows by omitting A and X:

z = Φ(z,θ). (4)

For example, the IGNN layer Eq. (2) can be derived in the
following vectorized form:

z = σ(W⊤ ⊗ Âz +U⊤ ⊗ Ix), (5)

where z = vec(Z), x = vec(X), and I denotes the identity
matrix.

According to previous works [25], [26], there is an equiv-
alence between the single and multiple layer equilibrium
models. Without loss of generality, we discuss the single-layer
case in the following, and leave the multi-layer case to Section
III-D.
Equilibrium Computation Although the equilibrium z has
desirable properties as above, it is less convenient to obtain. In
general cases, GEQs adopt off-the-shelf iterative root-finding
algorithms, such as Anderson’s method [27] and Broyden’s
method [21]. Among them, the simplest one is perhaps the
following (damped) fixed-point iteration,

zk = (1− η)zk−1 + ηΦ(zk−1,θ), (6)

where z0 is usually initialized as a random or all-zero vec-
tor, and η ∈ (0, 1] is the damping factor. The iterations
terminate when a pre-selected condition is satisfied, such
as when the relative residual is less than a tolerance ε,
i.e., ∥zk+1 − zk∥ / ∥zk∥ < ε, or when the iteration number
exceeds a maximal threshold K.
Model Training Once we have obtained z, we can cal-
culate the classification loss and update model parameters
using gradient-based optimizers. As a direct application of the
implicit function theorem [28], differentiating through θ on
both sides of Eq. (1) gives another fixed-point equation:

∇θz = ∇θz∇zΦ(z,θ) +∇θΦ(z,θ), (7)

where ∇θz denotes the gradient of z w.r.t. θ, and ∇zΦ
denotes the gradient of Φ w.r.t. z. Again, we can adopt
any iterative root-finding algorithm to solve the equation as
we do in the forward pass, without storing any intermediate
activations.
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Fig. 1. Micro-F1 score and per-epoch training time of IGNN [18] with
different tolerance ε on Flickr. We also include an explicit version of IGNN
and our VEQ of comparable parameter size for comparison.
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Fig. 2. Micro-F1 score (left) and memory consumption (right) of IGNN [18]
and our VEQ with different numbers of subgraphs on Flickr.

B. Limitations of Existing GEQs

Although GEQs show promising performances on some
benchmark datasets [18]–[20], they face two critical challenges
when dealing with large-scale graphs: the training inefficiency
and poor scalability, as elaborated below.
Training Inefficiency Although endowed with global recep-
tive fields, the implicit layer significantly increases the training
time. During each update of model parameters, we have to
solve two fixed-point equations (Eq. (4) in the forward pass
and Eq. (7) in the backward pass) from scratch, which takes a
long time to converge. In Fig. 1, we compare the performance
and the corresponding training time of IGNNs with different
terminal tolerance ε. We can see that IGNN with a more
accurate root (ε = 10−6) indeed brings better performance
than explicit GNNs (53.4% v.s. 53.0%). However, the training
is about 10 times slower, and the root-finding process indeed
contributes to a major proportion (89.7%) of the total training
time. Relaxing the terminal tolerance to 10−4 or 10−2 can
significantly reduce the training cost, but it will also severely
degrade model performance with noisy equilibrium and gra-
dients.
Equilibrium Deterioration in Mini-batch Training Another
obstacle is the scalability: existing GEQs [18]–[20] require
entire adjacency matrix and all node features in their forward
and backward root-finding process (Eq. (4) and Eq. (7)),

which is computationally prohibitive when the graph has too
many nodes1. Explicit GNNs usually adopt mini-batch training
with sampling techniques to scale the model to larger graphs.
However, this does not suit GEQs well. Different from explicit
GNNs, each node equilibrium depends on global receptive
fields. As mini-batch GEQs only have access to subgraph
nodes, the computed mini-batch equilibrium only has a small
local receptive field, which could be quite different from the
full-batch equilibrium computed with global receptive fields.
As shown in Fig. 2, full-batch trained GEQ is very memory-
intense. And when we reduce the memory footprint by split-
ting the full-graph into more subgraphs, the performance also
significantly degrades from 53.1% to 50.9%. Overall, GEQs
with vanilla mini-batch training suffer from equilibrium dete-
rioration and sacrifice their global receptive fields. Therefore,
scaling GEQs using vanilla mini-batch training is not a good
choice.

III. PROPOSED VIRTUAL EQUILIBRIUM MODEL (VEQ)

Section II reveals that the scalability and efficiency issues
of GEQs are both incurred by the high-dimensional root-
finding process of full-batch training, while vanilla mini-batch
training leads to equilibrium deterioration. In this section, we
introduce a simple but effective approach, Virtual Equilibrium,
to accelerate and scale GEQ training without performance
degradation. As illustrated in Fig. 1 & 2, our method is
not only more efficient (faster training) and scalable (smaller
memory cost), but also superior in performance compared with
full-batch GEQs.

A. Methodology

Equilibrium Acceleration Instead of iteratively approxi-
mating the equilibrium states from scratch in each model
update, which is very time-consuming, we propose to initialize
them as the equilibrium states obtained from previous updates.
When the model parameter is perturbed, the corresponding
equilibrium will not vary too much from the original one
(see Section III-C for a detailed explanation). Thus, our
initialization strategy will significantly reduce the computation
time for root-finding and accelerate GEQ training.
Equilibrium Calibration Instead of considering only mini-
batch information Bb, which results in equilibrium deteriora-
tion by narrowing the receptive fields, we propose to adopt the
equilibrium states of NBb

:=
⋃

v∈Bb
Nv from previous model

updates to approximate the equilibrium states of each mini-
batch Bb. Notably, we observe that even in full-batch GEQ
training, the equilibrium of a single node can be accurately
restored by the equilibrium of its 1-hop neighbors through
one step of fixed-point iteration. Also, the equilibrium of
mini-batch nodes Bb can be calculated by the equilibrium
of their 1-hop neighbors NBb

:=
⋃

v∈Bb
Nv . Motivated by

the observation, we take out-of-batch equilibrium states as

1When the implicit layer degenerates to a linear equation, Z has a closed-
form solution and can be directly solved [19]. However, as it involves matrix
inversion (O(n3)), the direct method is still computationally prohibitive for
large-scale problems.
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Algorithm 1 Training of Virtual Equilibrium Model (VEQ)
Input: Graph G = (V, E), input node features X , number of
batches B, number of training iterations L, number of fixed-
point iterations K.
Parameter: θ0 ∈ Λ.

Split into mini-batches {B1, ...,BB} ← SPLIT(G, B).
Get virtual sets Vb ← Bb ∪NBb

, ∀b ∈ {1, · · · , B}.
Initialize memory bank M = {v : z̄[v], v ∈ V} (in CPU).
for l ∈ {1, ..., L} do

Draw a batch Bb ∈ {B1, ...,BB}.
Virtual initialization: zl,0(v)←M[v], ∀v ∈ Vb.
// Canonical GEQ: Initialize zl,0[v] as zero, v ∈ Bb.
for k ∈ {1, ...,K} do

Update in-batch equilibrium: ∀v ∈ Bb,

zl,k[v] =ηΦ(zl,k−1[v ∪N in
v ]⊕ zl,0[N out

v ],θl)

+ (1− η)zl,k−1[v].

end for
Update memory bank M[v]← zl,K [v],∀v ∈ Bb.
Compute ∇θℓ(zl,K) using automatic differentiation.
Update parameters θl → θl+1 with ∇θℓ(zl,K).

end for
return θL.

reference points to compute the equilibrium of Bb, without
resorting to full-batch computation. As these reference points
approximate the exact equilibrium states, the calculated in-
batch equilibrium will also approximate the accurate one (see
Section III-C for a detailed explanation).
Virtual Equilibrium (VE) In summary, the equilibrium from
previous model updates contributes to the mini-batch training
of GEQs in two aspects: previous in-batch equilibrium (Bb)
can be adopted to accelerate root-finding, while previous out-
of-batch equilibrium (NBb

\Bb) can serve as reference points
to alleviate equilibrium bias. To combine the benefits of
both sides, we utilize the union of both Bb and their 1-hop
neighbors, i.e., Vb := Bb ∪ NBb

, dubbed the virtual set of
Bb for mini-batch training. Because the equilibrium of Vb
contains all global information needed to compute the exact
equilibrium of Bb, by recycling the latest equilibrium of the
virtual set, namely Virtual Equilibrium (VE), we can accelerate
and calibrate the current root-finding process.

B. The Design of VEQ

Based on the methodology above, we propose Virtual Equi-
librium Model (VEQ), a new scalable and efficient learning
method composed of the following components. An overview
of the training process is listed in Algorithm 1.
Memory Bank We maintain a memory bank M to store the
latest equilibrium of all nodes in V . We initialize them as zero
vectors, and update the corresponding nodes after each root-
finding process. If there are too many nodes in the graph, we
can store M in CPU memory.
Persistent Root Finding In each model update, we accel-
erate the root-finding process by continuing from the latest

equilibrium. For each mini-batch Bb drawn at the l-th training
iteration, we pull the latest equilibrium of the virtual set Vb =
Bb ∪NBb

from the memory bank M for virtual initialization,
and continue to update the equilibrium of in-batch nodes Bb
with K damped fixed-point iterations. Specifically, for each
node v ∈ Bb, we split its neighbors Nv into two parts: the in-
batch neighbors N in

v = Nv ∩ Bb, and out-of-batch neighbors
N out

v = Nv\Bb. Then for k = 1, . . . ,K, we have

zl,k[v] =ηΦ(zl,k−1[v ∪N in
v ]⊕ zl,0[N out

v ],θl)

+ (1− η)zl,k−1[v],
(8)

where zl,0[Vb] denotes the virtual initialization pulled from
the memory bank. After K iterations, we obtain the final in-
batch equilibrium estimate zl,K [Bb] and use it to update model
parameters. In practice, we notice a small K (e.g., 3 − 5 as
shown in Fig. 4) is often enough for training. Afterwards, we
push the new equilibrium zl,K [Bb] to the memory bankM to
update the equilibrium of the mini-batch nodes Bb. Notably,
the out-of-batch neighbors N out

v are only pulled once and do
not need to be updated along fixed-point iterations.
Model Update Once we have obtained zl,K [Bb], we can use
it to compute the node classification loss ℓ(zl,K) and update
model parameters by gradient-based optimizers. Specifically,
we utilize automatic differentiation through the K fixed-point
iterations (Eq. (8)) [29] to approximate the gradient at the
equilibrium without resorting to costly implicit differentiation.
Theorem III.4 tells that the gradient estimate is close to the
exact value, and guarantees to give a descent direction of the
loss function with mild assumptions.
Discussion In Fig. 3, we compare VEQ with vanilla full-batch
and mini-batch training of GEQ, from which we can conclude
the following major advantages of VEQ:

• Better Efficiency. Compared with random or zero ini-
tialization for zl,0, our virtual equilibrium initialization
is much closer to the final equilibrium, and thus largely
reduces the computation cost to solve the fixed-point
equation.

• Better Scalability. Previous GEQs all adopt full-batch
training that updates all node equilibrium at each root-
finding iteration. In comparison, VEQ only updates the
mini-batch nodes Bb using their 1-hop neighbors2, which
requires much less time and memory, and enables VEQ
to scale to large graphs via mini-batch training.

• Global Receptive Field. Vanilla mini-batch GEQ training
only has local receptive fields on sampled subgraphs,
and thus performs much inferior to its full-batch trained
variant. Instead, VEQ utilizes the virtual equilibrium,
which contains information from the whole graph, to
update the mini-batch equilibrium. Therefore, the mini-
batch equilibrium of VEQ also has global receptive fields.
In practice, we also notice that VEQ is less sensitive
to subgraph numbers and performs comparable (or even
superior) to full-batch GEQs, as shown in Fig. 2.

2Each virtual set Vb = Bb∪NBb
is typically only a small part in the whole

graph, e.g., 2% in ogbn-products in average when splited into 150 subgraphs.
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Fig. 3. An illustration of the root-finding computation graph in different training strategies of GEQs. (a) An example graph. (b) Full-batch training, where
the final equilibrium z∗

l has global receptive fields. (c) Vanilla mini-batch training on the subgraph of v1, v2, which only has local receptive field. (d) Our
proposed VEQ training. We initialize v1, v2 with their virtual equilibrium to accelerate equilibrium computation, and initialize the 1-hop neighbors v3, v4
with their virtual equilibrium as reference points to update v1, v2. We maintain the latest equilibrium of each node v, z̄[v], in a memory bank M. As a
result, the updated equilibrium of v1, v2 has global receptive fields in VEQ while requiring much less computation compared with full-batch training.

C. Theoretical Analysis

In this section, we provide theoretical analysis on the
approximation of equilibrium and gradients in VEQ. For the
ease of theoretical analysis, GEQs [18]–[20] generally assume
the contraction of the implicit mapping. As Lemma III.1
shows, the basic assumption guarantees the well-posedness
of the fixed point, and enables the application of implicit
differentiation in the backward pass. We denote ∇zΦ by the
gradient of Φ w.r.t. z, and ∇θΦ the gradient of Φ w.r.t. θ.

Assumption III.1. For every θ ∈ Λ, Φ(·,θ) is a contraction
with a constant qθ ≤ q ∈ (0, 1).

Lemma III.1. Under Assumption III.1, zθ is the unique fixed
point of Φ(·,θ), and I−∇zΦ(z,θ) is invertible.

Proof. Since Φ(·,θ) is contraction with constant qθ, based on
the Banach fixed-point theorem, Φ(·,θ) admits a unique fixed
point zθ. Moreover, we have

∥∇zΦ(z,θ)∥ ≤ qθ < 1. (9)

Therefore,∥∥(I−∇zΦ(z,θ))
−1

∥∥ =

∞∑
k=0

∥∇zΦ(z,θ)∥k (10)

≤
∞∑
k=0

qkθ =
1

1− qθ
. (11)

Thus, I−∇zΦ(z,θ) is invertible.

Equilibrium Approximation An important motivation of
VEQ is the intuition that the corresponding equilibrium does
not change much when the model parameter θ is perturbed
slightly. In the following, we give a theoretical description of
the change on the equilibrium.

Assumption III.2. ∇zΦ(z,θ) and ∇θΦ(z,θ) are Lipschitz
continuous for every θ ∈ Λ with constants LΦ,z and LΦ,θ,
respectively. Moreover, ∥∇θΦ(z,θ)∥ is bounded by a constant
CΦ,θ > 0.

Theorem III.2. Under Assumptions III.1 and III.2, we have
∥zθ1 − zθ2∥ ≤ C1 ∥θ1 − θ2∥ for ∀ θ1,θ2 ∈ Λ, where C1 is
a constant.

Proof. Based on Eq. (7), we have

∇θz = ∇θΦ(z,θ)(I−∇zΦ(z,θ))
−1. (12)

From Lemma III.1, we have

∥∇θz∥ ≤
∥∥(I−∇zΦ(z,θ))

−1
∥∥ ∥∇θΦ(z,θ)∥ (13)

≤ CΦ,θ

1− q
=: C1. (14)

The last inequality uses Assumption III.2. Based on the
definition of Lipschitz continuity, we complete the proof.

Theorem III.2 shows that the change of equilibrium is
bounded by the change of the parameter θ. Therefore, as
long as the model parameters change slightly, our virtual
equilibrium recycled from previous update will be close to
that of the current training step.

Another important motivation of VEQ is that if the out-of-
batch virtual equilibrium is close to the exact value, the output
of VEQ using only 1-hop virtual equilibrium should also
be close to the exact equilibrium computed from full-batch
updates. We denote zin

θ , zout
θ as the exact node equilibrium

that belongs to B and N [B]\B, respectively. We also denote
zout as the virtual equilibrium that belongs to N [B]\B, and
denote z̃in as the updated equilibrium that belongs to B. The
following theorem shows that the error of the updated in-batch
equilibrium is bounded by the error of out-of-batch VE, which
verifies our intuition.

Theorem III.3. Under Assumptions III.1 and III.2, we have∥∥z̃in − zin
θ

∥∥ ≤ C2 ∥zout − zout
θ ∥, where C2 is a constant.

Proof. The point of the proof is that in-batch equilibrium
states only depends on its 1-hop neighbors in the update. For
a mini-batch B ⊆ V , let Φ̃(·, zout,θ) be the function confined
by the out-of-batch node equilibrium zout, where zout is taken
as its parameter. According to the definition of Φ, we have

zin
θ = Φ̃(zin

θ , zout
θ ,θ). (15)
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Also, we have ∥∇zΦ̃∥ < q, and ∥∇θΦ̃∥ < q. Using the same
way we prove Theorem III.2, we have∥∥∥∥ dzin

dzout

∥∥∥∥ ≤ q

1− q
=: C2. (16)

We complete the proof using the definition of Lipschitz
continuity.

Gradient Approximation As described before, in the back-
ward pass, we back-propagate through K steps of fixed-point
iterations and take the gradient as an estimate of the exact
value. We denote ∇θzK as the estimated gradient obtained
from backpropagation, and denote ∇θz as the exact gradient.
With the following theorem, we prove that ∇θzK converges
to the exact gradient as K goes to infinity. Moreover, the
error bound is related to the start of the fixed-point iteration
z0. Consequently, since taking virtual equilibrium as the
initialization narrows the gap between z0 and zθ, we can
approximate the exact gradient with fewer iterations.

Theorem III.4. Under Assumptions III.1 and III.2, we have
limK→∞∇θzK = ∇θz. Moreover, we have

∥∇θzK −∇θz∥ ≤(1− η + ηqθ)
K ∥∇θz0 −∇θz∥

+K(1− η + ηqθ)
K−1C3η ∥z0 − zθ∥ ,

where C3 is a constant.

Proof. In the following, we denote ∇θzK by AK , and denote
∇θzθ by A∗. To show that AK → A∗, we use the recursive
relation of Ak and A∗ as follows:

Ak+1 =Ak(η∇zΦ(zk,θ) + (1− η)I) + η∇θΦ(zk,θ) (17)
=(1− η)Ak + η(Ak∇zΦ(zk,θ) +∇θΦ(zk,θ)),

(18)

and
A∗ = A∗∇zΦ(zθ,θ) +∇θΦ(zθ,θ). (19)

Based on the recursive relation above and some linear algebra
derivation, we get

∥Ak+1 −A∗∥
≤∥(1− η)(Ak −A∗)∥+ η ∥∇θΦ(zk,θ)−∇θΦ(zθ,θ)∥

+ η ∥Ak∇zΦ(zk,θ)−A∗∇zΦ(zθ,θ)∥ .
(20)

Since

∥Ak∇zΦ(zk,θ)−A∗∇zΦ(zθ,θ)∥ (21)
≤∥Ak −A∗∥ · ∥∇zΦ(zk,θ)∥
+ ∥A∗∥ · ∥∇zΦ(zk,θ)−∇zΦ(zθ,θ)∥

(22)

≤qθ ∥Ak −A∗∥+ C1 ∥∇zΦ(zk,θ)−∇zΦ(zθ,θ)∥ , (23)

we have

∥Ak+1 −A∗∥ (24)
≤(1− η + ηqθ) ∥Ak −A∗∥
+ η ∥∇θΦ(zk,θ)−∇θΦ(zθ,θ)∥
+ ηC1 ∥∇zΦ(zk,θ)−∇zΦ(zθ,θ)∥

(25)

≤(1− η + ηqθ) ∥Ak −A∗∥+ C3η ∥zk − zθ∥ , (26)

where C3 = LΦ,θ+C1LΦ,z . By iteratively using the relation-
ship, we have

∥AK −A∗∥ ≤(1− η + ηqθ)
K ∥A0 −A∗∥

+K(1− η + ηqθ)
K−1C3η ∥z0 − zθ∥ .

(27)

Then it is straight forward to verify that AK → A∗ when
K →∞.

Moreover, the following theorem guarantees that even with
limited iterations, the gradient estimate still gives a descent
direction of the loss landscape with mild assumptions.

Assumption III.3. ∇zℓ is Lipschitz continuous for every θ ∈
Λ with a constant Lℓ,z , and is bounded by a constant Cℓ,z > 0.

Theorem III.5. Suppose Assumptions III.1, III.2 and III.3
hold, and let σmax and σmin be the maximal and mini-
mal singular value of ∇θz. If (σ2

min − σmax ∥E∥) ∥u∥2 ≥
Lℓ,zCℓ,zC1 ∥Ak∥ ∥zθ − zK∥, then ∇θzK provides a descent
direction of the loss function ℓ.

Proof. Denote J = ∇θΦ, v = ∇zℓ, and u = (I−∇zΦ)
−1v,

E = Ak(I − ∇zΦ) − ∇θΦ. Denote the gradient estimate as
∂ℓ̂
∂θ , and the exact gradient as ∂ℓ

∂θ , then〈
∂ℓ̂

∂θ
,
∂ℓ

∂θ

〉
=

〈
∂ℓ

∂zθ

∂zK
∂θ

,
∂ℓ

∂zθ

∂zθ
∂θ

〉
+

〈(
∂ℓ

∂zK
− ∂ℓ

∂zθ

)
∂zK
∂θ

,
∂ℓ

∂zθ

∂zθ
∂θ

〉
,

(28)

where 〈
∂ℓ

∂zθ

∂zK
∂θ

,
∂ℓ

∂zθ

∂zθ
∂θ

〉
(29)

=v⊤A⊤
k J(I−∇zΦ)

−1v (30)

=u⊤(I−∇zΦ)
⊤AkJu = u⊤(J+E)⊤Ju (31)

≥∥Ju∥2 − ∥E∥ ∥J∥ ∥u∥ (32)

≥(σ2
min − σmax ∥E∥) ∥u∥2 ≥ 0, (33)

and 〈(
∂ℓ

∂zK
− ∂ℓ

∂zθ

)
∂zK
∂θ

,
∂ℓ

∂zθ

∂zθ
∂θ

〉
≥− Lℓ,zCℓ,zC1 ∥Ak∥ ∥zθ − zK∥ .

(34)

We complete the proof by combining them together.

D. Extension to Multiple Layers

In this section, we first elaborate on the equivalence of
multiple IGNN layers and one single wider layer, and then
we describe how we implement our VEQ with multiple IGNN
layers using the equivalence.

Suppose our implicit layer is composed of T IGNN layers
Φ1, · · · ,ΦT with damping factor η, we use the following
theorem to declare that it is actually equivalent to a wider
single GEQ layer.

Theorem III.6. Let z∗
0 be the equilibrium of the equation

z = ΦT ◦ ΦT−1 · · ·Φ1(z,θ,x), let z∗
1 = Φ1(z

∗
0 ,θ,x), z

∗
2 =
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Φ2 ◦Φ1(z
∗
0 ,θ,x), · · · , z∗

T−1 = ΦT−1 ◦· · ·◦Φ2 ◦Φ1(z
∗
0 ,θ,x),

then z̃∗ = (z∗
1 ⊕ · · · ⊕ z∗

T−1 ⊕ z∗
0)

⊤ is the equilibrium of the
equation:

z̃ = ησ(P⊤W̃⊤ ⊗ Âz̃ + Ũ⊗ Ix) + (1− η)Pz̃, (35)

where W̃ is block diagonal, P is a permutation matrix, and
Ũ is a concatenated matrix as follows:

W̃ :=


W1

W2

. . .
WT

 , (36)

P :=


0 I
I 0

. . .
. . .
. . . 0

I 0

 , Ũ =


U⊤

1

U⊤
2
...

U⊤
T−1

U⊤
T

 . (37)

Proof. We can rewrite z̃ = ΦT ◦ ΦT−1 · · ·Φ1(z̃,θ,x) in a
separated matrix form:

z1
z2
...

zT−1

z0

 =ησ





0 W⊤
1

W⊤
2 0

. . . . . .
. . . 0

W⊤
T 0



⊗ Â


z1
z2
...

zT−1

z0

+


U⊤

1

U⊤
2
...

U⊤
T−1

U⊤
T

⊗ Ix



+ (1− η)


0 I
I 0

. . . . . .
. . . 0

I 0




z1
z2
...

zT−1

z0

 .

(38)

Hence a multi-layer VEQ is actually a single-layer VEQ with
multiple layers.

Implementation of Multi-layer VEQ With the above theo-
rem, we notice that an evaluation of the multi-layer function
ΦT ◦ ΦT−1 · · ·Φ1(·,θ,x) applied on a node v still only
accesses its 1-hop neighbors. As a result, our discussions on
the 1-layer case also apply to the multi-layer case. For a mini-
batch B, we use the superscript “in” and “out” to denote the
node equilibrium that belongs to B and N [B]\B, respectively.
In the implementation, we notice that the in-batch equilibrium
zin
1 , · · · , zin

T−1 can also be derived sequentially from zin
0 and

z̃out. Consequently, to reduce data transfer, we pull z∗
0 [B] from

the memory bank for in-batch nodes, and z̃∗[N [B]\B] for out-
of-batch nodes. And when we finish fixed-point iterations, we
push back the in-batch equilibrium z̃∗[B], which serves as

virtual equilibrium in the next model update. Between fixed-
point iterations, we do not need to push or pull any virtual
equilibrium.

IV. RELATED WORK

A. Graph Equilibrium Models

DEQs (Deep Equilibrium Models) [25], [30] are a new
kind of implicit models, whose output is the solution to
a fixed-point equation. IGNN [18] first realizes equilibrium
models on graphs and achieves superior performances than
explicit GNNs at capturing long-range dependencies, though
at the cost of more training time due to the root-finding
process. Later works, including CGS [20] and EIGNN [19],
propose to simplify the fixed-point equation to a linear form.
EIGNN directly solves the closed-form solution via eigen-
decomposition, which can be pre-processed for fast training.
However, for a graph with n nodes and d-dimensional fea-
tures, the decomposition step is of O(n3) time complexity
and O(n2 + d2) memory complexity, making them hardly
scalable to large graphs. Another direction is to adopt gradient
estimates to accelerate the backward pass. Similar to ours,
ITD [31] and Phantom Gradient [29] also replace the exact
gradient by unrolling-based estimates to bypass the inversion
of a high-dimensional Jacobian. However, ITD initializes
the equilibrium from scratch, so that it would take many
more steps to approximate the exact gradient. The Phantom
Gradient starts unrolling from the equilibrium. Although it
can approximate ∇θz faster than ITD, it has to calculate the
exact equilibrium zθ from scratch before the unrolling starts.
In comparison, we use virtual equilibrium as a warm start and
the fixed-point iteration converges in a few steps, which largely
saves the backward computation cost through unrolled steps,
and meanwhile we do not need an extra root-finding process
before the unrolling starts.

B. Sampling-based Graph Neural Networks

Explicit GNNs suffer from the neighbor explosion phe-
nomenon, where the required nodes increase exponentially
over layers [22]. Various sampling-based methods have been
explored to alleviate this issue, including node-wise sampling
approaches [6], [22], [32], layer-wise sampling approaches
[23], [33], [34] and subgraph-based sampling approaches [24],
[35], [36]. Several recent works also study reusing the histori-
cal node embeddings from previous training steps to approxi-
mate full-batch training, such as GAS [37] and GraphFM [38].
As far as we know, we are the first to train GEQs in mini-batch
on large-scale graphs with full-batch information. Compared
with these works, our VEQ has two major advantages. First, L-
layer explicit GNNs are fundamentally limited to a small local
receptive field with L-hop neighbors (even full-batch), while
as an implicit model that updates the equilibrium persistently
along training, VEQ has global receptive fields over the entire
graph. Second, explicit GNNs have to push and pull historical
embeddings each time they update a layer (O(L)). Instead, in
our VEQ, we only need to push and pull the equilibrium z
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TABLE I
STATISTICS AND PROPERTIES OF THE DATASETS. THE “M” DENOTES THE MULTI-LABEL CLASSIFICATION TASK, AND “S” DENOTES THE SINGLE LABEL

CLASSIFICATION TASK.

Dataset Nodes Edges Degree Classes Train/Validation/Test

Flickr 89, 250 899, 756 10 7(s) 0.50/0.25/0.25
Reddit 232, 965 114, 615, 892 50 41(s) 0.66/0.10/0.24
Yelp 716, 847 13, 954, 819 10 100(m) 0.75/0.10/0.15
ogbn-arxiv 169,343 1,166,243 9 40(s) 0.537/0.176/0.287
ogbn-products 2,449,029 61,859,140 25 47(s) 0.10/0.02/0.88
PPI 56,994 818, 716 14 121(m) 0.79/0.11/0.10

TABLE II
NODE CLASSIFICATION RESULTS ON LARGE-SCALE GRAPHS: MICRO-F1 SCORE (%)± STANDARD DEVIATION OVER DIFFERENT INITIALIZATION. WE

MARK THE RESULTS IMPLEMENTED BY US WITH ∗.

Type
#nodes 89,250 232,965 716,847 56,994
#edges 899,756 114,615,892 13,954,819 818,716
Model Flickr Reddit Yelp PPI

Explicit

GraphSAGE 50.10±1.3% 95.30±0.1% 63.40±0.6% 61.20
FastGCN 50.40±1.0% 92.40±0.1% 26.50±5.3% -
VR-GCN 48.20±3.0% 96.40±0.1% 64.00±0.2% 85.60
Cluster-GCN 48.10±0.5% 95.40±0.1% 60.90±0.5% 99.36
GraphSAINT 51.10±0.1% 97.00±0.1% 65.30±0.3% 99.50
GAS 53.70 95.45 62.94 98.92
GraphFM 54.46 95.40 - -

Implicit IGNN 53.40±0.1%∗ 94.54±0.1%∗ 63.58±0.1%∗ 97.60
VEQ 55.34±0.7% 96.81±0.3% 64.90±0.1% 99.22±0.2%

TABLE III
NODE CLASSIFICATION RESULTS ON LARGE-SCALE OGB DATASETS:

MICRO-F1 SCORE (%). WE MARK THE RESULTS IMPLEMENTED BY US
WITH ∗. OOM: OUT OF MEMORY.

Type
#nodes 169,343 2,449,029
#edges 1,166,243 61,859,140
Model ogbn-arxiv ogbn-products

Explicit

GraphSAGE 71.49 78.70
Cluster-GCN - 78.97
GraphSAINT - 79.08
GAS 71.68 76.66
GraphFM 71.81 76.88

Implicit IGNN 70.98∗ OOM∗

VEQ 72.82 79.23

once in the memory bank (O(1)), which largely reduces the
overhead caused by data transfer.

V. EXPERIMENTS

In this section, we conduct a comprehensive analysis of
VEQ on large-scale benchmark datasets. Our code is available
at https://github.com/7qchen/VEQ.

A. Performance on Benchmark Datasets

Hardware and Softwares We conduct our experiments on
NVIDIA GeForce RTX 3090 Ti with 24 GB memory, and Intel
Xeon Gold 6342 CPU. And we implement our VEQ based on
PyTorch [39], Pytorch Geometric [40], and PyGAS [37].

Datasets We study six large-scale graphs with thousands
or millions of nodes and edges, including Flickr [35], Yelp
[35], Reddit [22], PPI [22], and two from OGB benchmark

[41]: ogbn-arxiv and ogbn-products. The statistics for the six
benchmark graphs is listed in Table I. Among them, PPI is
the only dataset that contains multiple graphs, and Yelp is the
only dataset where a node is associated with multiple labels.

Baselines We compare VEQ against several representative
explicit and implicit models. For explicit models, we consider
two node-wise sampling methods FastGCN [23] and Graph-
SAGE [22], a layer-wise sampling method VR-GCN [32],
and two subgraph-sampling methods Cluster-GCN [24] and
GraphSAINT [35]. Besides, we also include two historical-
based scalable methods: GAS [37] and GraphFM [38]. We
report their GCN-based [4] variants for a fair comparison,
which share the same aggregation mechanism as ours. For
implicit models, we adopt IGNN [18] as our baseline. EIGNN
[19] is not included, as it barely works on large-scale datasets.
For example, on the smallest Flickr dataset, its preprocessing
step cannot even finish in 8 hours (10× IGNN’s total training
time). We do not include CGS [20] as it is only designed for
graph classification tasks. Since the authors of IGNN [18] only
provide official code for PPI, we implement IGNN with the
same model structure on other datasets, tune the number of
layers and report the best results.

Results We repeat the experiments for 5 times on the
four datasets: Flickr, Yelp, Reddit and PPI, and report the
mean testing micro-F1 score and standard deviation in Table
II. We also report the results of two OGB datasets in Table
III. We can see that VEQ outperforms the implicit baseline
IGNN by a large margin on the four datasets, indicating
that VEQ not only enjoys global receptive fields as IGNN,
but also benefits a lot from stochastic training. Besides,
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Fig. 4. Left: the relative residual of root-finding with different fixed-point
iterations on Flickr using zero or virtual equilibrium as initialization. Right:
micro-F1 score (%) and per-epoch training time with different fixed-point
iterations on Flickr.

TABLE IV
ABLATION STUDY OF DIFFERENT USAGES OF VIRTUAL EQUILIBRIUM (VE)

ON FLICKR: MICRO-F1 SCORE (%).

Training In-batch Out-of-batch Micro-F1Initialization Initialization

Full Batch Zero - 53.68
VE - 53.84

Mini-Batch
Zero - 53.20
VE - 53.91
VE VE 55.34

VEQ also achieves competitive performance against explicit
methods. Specifically, it outperforms all explicit and implicit
methods on the two OGB datasets, and outperforms the best
explicit baseline GraphSAINT by 4.24% on Flickr. On Reddit,
Yelp, and PPI, VEQ outperforms all explicit methods except
GraphSAINT, while the differences to GraphSAINT are small
and often not statistically significant. Notably, VEQ shows
clear advantages compared with full-batch training simulators
like GAS and GraphFM. This is mainly because our VEQ
enjoys global receptive fields with persistent root-finding along
training, while an L-layer explicit model can only capture
information within L-hop neighbors.

B. Equilibrium Computation

To verify that VE initialization indeed helps to find the
equilibrium more efficiently, we show the relative residual
∥zi+1 − zi∥ / ∥zi∥ along the root-finding process in Fig. 4
(left). We can see that our model exhibits stable convergence
with both zero and VE initialization, while the latter converges
significantly faster than the former. Indeed, as shown in Fig. 4
(right), a small iteration number K is enough to achieve the
best performance. Even when K = 1, VEQ (54.1%) still
outperforms IGNN (53.4%) while being considerably faster.
Also, there is a tradeoff that either too many or too few
iterations lead to degraded performance. Too few iterations
may not be enough for equilibrium updates, while too many
iterations may intensify the change of equilibrium in case
the model does not converge well. Generally, K = 3 is an
appropriate choice for Flickr, and it is still much faster than
IGNN (c.f. Fig. 1).

TABLE V
TOTAL GPU MEMORY COST (IN GB) AND THE PROPORTION OF DATA

USED FOR COMPUTING THE EQUILIBRIUM ON FLICKR.

#nodes 89K 717K 233K
#edges 0.9M 14.0M 114.6M
Training Flickr Yelp Reddit

Full-batch 3.2/100% 12.0/100% 6.9/100%
Mini-batch 2.3/100% 3.8/100% 3.0/100%

C. Ablation Study

We further conduct an ablation study on the two roles of
VE: 1) initialization for in-batch nodes, and 2) reference points
for out-of-batch nodes, under both full-batch and mini-batch
settings. From Table IV, we can see that the in-batch VE
initialization improves model performance in both cases, and
the advantage is clearer under mini-batch setting (+0.71%)
than full-batch setting (+0.16%). Besides, the out-of-batch
virtual equilibrium is more helpful as it brings extra +1.43%
micro-F1. Therefore, the global receptive fields brought by
out-of-batch VE indeed contribute to a major part of the
improvement of VEQ. Comparing full-batch and mini-batch
training, we can see that mini-batch training performs better
under VE (55.34% v.s. 53.84%). Meanwhile, Table V shows
that VEQ also has less memory consumption under mini-
batch training while it utilizes 100% information with global
receptive fields.

VI. CONCLUSION

In this paper, we studied the obstacles of applying existing
GEQs to large-scale graphs, and found that their inefficiency
and poor scalability stem from the costly root-finding process.
To address these limitations, we proposed to accelerate and
scale GEQ training with Virtual Equilibrium (VE). Notably,
VE improves mini-batch GEQ training in two aspects: for
in-batch nodes, VE serves as an informative initialization to
accelerate convergence; while for out-of-batch 1-hop neigh-
bors, VE serves as reference points that provide global in-
formation for updating in-batch nodes. Extensive experiments
demonstrate that our method is both efficient and scalable,
and it achieves superior performances than full-batch trained
GEQs on large-scale graphs. We hope that our findings could
widen the applicability of GEQs on large-scale problems, and
facilitate more flexible GEQ architectures.
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