

A Unified Contrastive Energy-based Model for Understanding the Generative Ability of Adversarial Training

ICLR 2022

Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin

Peking University

Background

- Adversarial Training (AT)
 - by far the most effective defense against adversarial attack
 - Minimax training objective

$$\min_{ heta} \mathbb{E}_{p_d(x,y)}igg[\max_{\|\hat{x}-x\|_p \leq \epsilon} \ell_{CE}(\hat{x},y; heta)igg],$$

- Max (inner-loop): generate worst-case adversarial example \hat{x} with maximal loss
- Min (outer-loop): update parameters on adversarial pair (\hat{x}, y)

The Unexpected Bonus of Adversarial Training

- Tsipras et al. (2018) show that robust features (by AT) align well with human perception
- Engstrom et al. (2019) show that we can reconstruct inputs from robust representations
- Santurkar et al. (2019) show that we can generate high-quality images from noise by targeted attack

(c) Restricted ImageNet

Figure from Tsipras et al. (2018)

(b) CIFAR-10

Figure from Santurkar et al. (2019)

Overview of CEM

- Where does the generative ability of AT come from?
 - There still lacks theoretical understandings of this phenomenon
- Our work demystifies AT with a unified framework Contrastive Energy-based (CEM)
 - General Form for two random variables (u,v)

$$p_{\boldsymbol{\theta}}(\mathbf{u}, \mathbf{v}) = \frac{\exp(f_{\boldsymbol{\theta}}(\mathbf{u}, \mathbf{v}))}{Z(\boldsymbol{\theta})},$$

- where $f_{\theta}(u,v)$ measures the similarity between the two variables
- Parametric CEM for supervised learning with input x and y

$$p_{\boldsymbol{\theta}}(\mathbf{x}, y) = \frac{\exp(f_{\boldsymbol{\theta}}(\mathbf{x}, y))}{Z(\boldsymbol{\theta})} = \frac{\exp(g_{\boldsymbol{\theta}}(\mathbf{x})^{\top} \mathbf{w}_y)}{Z(\boldsymbol{\theta})},$$

- where $g_{\theta}(x)$ is the encoder output, and w_k is a parameterized class cluster
- Can be shown as a equivalence of JEM (Grathwohl et al. 2019)
- Non-Parametric CEM for unsupervised learning with two inputs x and x'

$$p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}') = \frac{\exp(f_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}'))}{Z(\boldsymbol{\theta})} = \frac{\exp\left(g_{\boldsymbol{\theta}}(\mathbf{x})^{\top}g_{\boldsymbol{\theta}}(\mathbf{x}')\right)}{Z(\boldsymbol{\theta})},$$

Overview of CEM

- Where does the generative ability of AT come from?
 - There still lacks theoretical understandings of this phenomenon
- Our work demystifies AT with a unified framework Contrastive Energy-based (CEM)
 - General Form for two random variables (u, v)

$$p_{\boldsymbol{\theta}}(\mathbf{u}, \mathbf{v}) = \frac{\exp(f_{\boldsymbol{\theta}}(\mathbf{u}, \mathbf{v}))}{Z(\boldsymbol{\theta})},$$

- where $f_{\theta}(u,v)$ measures the similarity between the two variables
- Parametric CEM for supervised learning with input x and y

Contributions:

1. A Probabilistic Framework for Analyzing of AT

2. Unifying Supervised and Unsupervised AT as a whole, allow us to derive principled unsupervised AT

3. A principled framework for designing sampling algorithms for robust models

$$p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}') = \frac{\exp(f_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}'))}{Z(\boldsymbol{\theta})} = \frac{\exp\left(g_{\boldsymbol{\theta}}(\mathbf{x}) + g_{\boldsymbol{\theta}}(\mathbf{x}')\right)}{Z(\boldsymbol{\theta})},$$

Supervised Case – Demystifying AT's generative Ability

• Maximization Process –

$$\hat{\mathbf{x}}_{n+1} = \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}_n} \ell(\hat{\mathbf{x}}_n, y; \boldsymbol{\theta}) = \hat{\mathbf{x}}_n - \alpha \nabla_{\hat{\mathbf{x}}_n} \log p_{\boldsymbol{\theta}}(y | \hat{\mathbf{x}}_n) \\ = \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}_n} \left[\log \sum_{k=1}^K \exp(f_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_n, k)) \right] - \alpha \nabla_{\hat{\mathbf{x}}_n} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_n, y),$$

• Langevin Sampling

$$\hat{\mathbf{x}}_{n+1} = \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}} \log p_{\theta}(\hat{\mathbf{x}}_n) + \sqrt{2\alpha} \cdot \boldsymbol{\varepsilon}$$
$$= \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}_n} \left[\log \sum_{k=1}^{K} \exp(f_{\theta}(\hat{\mathbf{x}}_n, k)) \right] + \sqrt{2\alpha} \cdot \boldsymbol{\varepsilon}$$

- Minimization Process
 - Decomposing the likelihood gradient of CEM

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p_d(\mathbf{x},y)} \log p_{\boldsymbol{\theta}}(\mathbf{x},y) = \mathbb{E}_{p_d(\mathbf{x},y) \bigotimes p_{\boldsymbol{\theta}}(\hat{\mathbf{x}},\hat{y})} \begin{bmatrix} \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\mathbf{x},y) - \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}},\hat{y}) \\ = \mathbb{E}_{p_d(\mathbf{x},y) \bigotimes p_{\boldsymbol{\theta}}(\hat{\mathbf{x}},\hat{y})} \begin{bmatrix} \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\mathbf{x},y) - \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}},y) \\ \hline \text{consistency gradient} \end{bmatrix} - \begin{bmatrix} \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\mathbf{x},y) - \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}},\hat{y}) \\ \hline \text{contrastive gradient} \end{bmatrix} \end{bmatrix}.$$

Equivalent to AT loss!

Supervised Case – Demystifying AT's generative Ability

• Maximization Process –

$$\begin{aligned} \hat{\mathbf{x}}_{n+1} &= \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}_n} \ell(\hat{\mathbf{x}}_n, y; \boldsymbol{\theta}) = \hat{\mathbf{x}}_n - \alpha \nabla_{\hat{\mathbf{x}}_n} \log p_{\boldsymbol{\theta}}(y | \hat{\mathbf{x}}_n) \\ &= \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}_n} \left[\log \sum_{k=1}^K \exp(f_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_n, k)) \right] - \alpha \nabla_{\hat{\mathbf{x}}_n} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_n, y), \end{aligned}$$

• Langevin Sampling

$$\hat{\mathbf{x}}_{n+1} = \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}} \log p_{\theta}(\hat{\mathbf{x}}_n) + \sqrt{2\alpha} \cdot \boldsymbol{\varepsilon}$$
$$= \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}_n} \left[\log \sum_{k=1}^{K} \exp(f_{\theta}(\hat{\mathbf{x}}_n, k)) \right] + \sqrt{2\alpha} \cdot \boldsymbol{\varepsilon}$$

- Minimization Process
 - Decomposing the likelihood gradient of CEM

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p_d(\mathbf{x},y)} \log p_{\boldsymbol{\theta}}(\mathbf{x},y) = \mathbb{E}_{p_d(\mathbf{x},y) \bigotimes p_{\boldsymbol{\theta}}(\hat{\mathbf{x}},\hat{y})} \left[\nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\mathbf{x},y) - \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}},\hat{y}) \right]$$

$$= \mathbb{E}_{p_d(\mathbf{x},y) \bigotimes p_{\boldsymbol{\theta}}(\hat{\mathbf{x}},\hat{y})} \left[\underbrace{\nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\mathbf{x},y) - \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}},y)}_{\text{consistency gradient}} - \underbrace{\nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}},y) - \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}},\hat{y})}_{\text{contrastive gradient}} \right].$$

Equivalent to AT loss!

Supervised Case – Demystifying AT's generative Ability

• Maximization Process –

• PGD

- $\hat{\mathbf{x}}_{n+1} = \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}_n} \ell(\hat{\mathbf{x}}_n, y; \boldsymbol{\theta}) = \hat{\mathbf{x}}_n \alpha \nabla_{\hat{\mathbf{x}}_n} \log p_{\boldsymbol{\theta}}(y | \hat{\mathbf{x}}_n)$ $= \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}_n} \left[\log \sum_{k=1}^K \exp(f_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_n, k)) \right] \alpha \nabla_{\hat{\mathbf{x}}_n} f_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_n, y),$
- Langevin Sampling

$$\hat{\mathbf{x}}_{n+1} = \hat{\mathbf{x}}_n + \alpha \nabla_{\hat{\mathbf{x}}} \log p_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_n) + \sqrt{2\alpha} \cdot \boldsymbol{\varepsilon}$$

PGD as a (biased) sampling process

 $AT \approx MLE$ training of CEM, which explains the generative ability

Image Generation Experiments

- Comparing different adversarial sampling algorithms
 - Our proposed algorithms achieve significant improvement over baselines
 - Comparable to state-of-the-art generative models
 - Unsupervised robust models can be almost equally good at sampling

ressive	Trair
N++* (Salimans et al., 2017)	
sed	
* (Radford et al., 2016)	Super
GP (Gulrajani et al., 2017)	Super
(Dieng et al., 2019)	
N2-ADA (Karras et al., 2020)	
sed	
ong & Ermon, 2019)	Unsupe
Ho et al., 2020)	(w/Dec
(Song et al., 2020)	(w/ Kes
sed	
athwohl et al., 2019)	2
o et al., 2021)	T.T
1	Unsupe
urkar et al., 2019) (w/ ResNet50)	(w/ Res
ed CEM (w/ ResNet50)	
vised CEM (w/ ResNet18) (ours)	
vised CEM (w/ ResNet50) (ours)	
sed ong & Ermon, 2019) Io et al., 2020) (Song et al., 2020) sed athwohl et al., 2019) o et al., 2021) I urkar et al., 2019) (w/ ResNet50) ed CEM (w/ ResNet50) vised CEM (w/ ResNet18) (ours) vised CEM (w/ ResNet50) (ours)	Unsup (w/ Re Unsup (w/ Re

Training	Sampling	Method	IS (†)	FID (\downarrow)
Supervised	Cond	TA	9.26	56.72
		Langevin	9.65	63.34
		CS	9.77	56.26
		RCS	9.80	55.91
Unsupervised (w/ ResNet18)	Uncond	PGD	5.35	74.27
		MaxEnt	8.24	41.80
	Cond	PGD	5.85	68.54
		MaxEnt	8.68	36.44
Unsupervised (w/ ResNet50)	Uncond	PGD	5.24	141.54
		MaxEnt	9.57	44.86
	Cond	PGD	5.37	137.68
		MaxEnt	9.61	40.25

Takeaways

- A probabilistic perspective of Adversarial Training helps explain its generative ability
- Unsupervised Adversarial Training loss can be developed via CEM in a principled way
- Adversarial Sampling from Robust Models can generate high-equality samples on par with state-of-the-art generative models

Thanks for Listening