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Masked AutoEncoders I EPE;
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« Development of Self-Supervised Learning (SSL) Paradigms
« 2019-2021: Contrastive Learning (SimCLR, MoCo, BYOL, Barlow Twins, ...)

« 2021-now: Masked Autoencoder (MAE) (He et al., 2021)
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- MAE Objective (encoder f, decoder g, whole model h = g - f)

Lrine(h) = EsEq, o,z 19(f (21)) — 22|
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Mysteries of MAE

« MAE = autoencoder + masking

« Autoencoder
 As a generative model, MAE has poor reconitruction quality from masked inputs
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- Masking
« MAE adopts a very large mask ratio (75%)
« Most image semantics are lost

« Our perspective
 Reconstruction is only a surrogate task for representation learning
« Question: What is the role of masking? How does it affect downstream performance?
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https://yifeiwang77.github.io/

MAE Implicitly Performs Contrastive Learning e g X ¥
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Lrine(h) = EsEy, o,z [19(f (21)) — z2]”,

Mask Graph Augmentation Graph

I To .'II].
oy L)
) ® MAE implicitly defines positive input pairs (as in
:1:'17-:::’2 3310,‘ contrastive learning) as 2-hop neighbors in the mask graph
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Main Theorem: A small MAE loss implies good alignment of positive input pairs

Theorem 3.4. Under Assumption 3.1, MAE’s reconstruction loss (Eq. (2)) can be lower bounded by
the alignment loss between positive pairs (z1,z] ) ~ A(z1,z]),

1
Lyae(h) > Eﬁal,-gn(h) — & + const. 7

Laign(h) = —E, ,+h(z1)" h(z]).
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Feature Collapse in MAE: Implicit Regularizations and Limitations 9'5%

« MAE can avoid full feature collapse
* Fully collapsed encoder suffers from a large MAE loss

Theorem 3.6. When the encoder fully collapses, i.e., Vx € X1, f(x) = c, the MAE loss has a large

lower bound.:
[:MAE(h) = Var(xg), 9

where Var(z,) denotes the variance of masked targets computed on the training dataset.

« MAE still suffers from Dimensional Collapse
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(b) comparison of singular values (c) comparison of effective rank

« Uniformity-enhanced MAE (U-MAE): promote feature diversity with an explicit uniformity loss
« minimizes the similarities of randomly drawn negative input pairs (x1, x7)

Lumag(h) = Lmae(h) + X - Lunie(f),
where Luni(f) = Eq, E, - (f(z1) " f(z1))?,
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Downstream Generalization of Masked Autoencoders
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- Based on this connection, we provide theoretical guarantees on downstream performance

Theorem 4.1. Denote the mask-induced label error as a = E;z ,, 1[y(x1) # y(Z)]. Then, for
Y h € H (the hypothesis class) with h = g o f, the downstream classzﬁcatzon error of its encoder can

be upper bounded by its U-MAE pretraining {g Vanilla autoencoding error (no mask)
Pr(g # ps(Z)) < a1 L LUMAE(h .+ c4, (14)

where c1,. .. ,cq4 are constants and c3 > 1.

Label error

« The minimal U-MAE loss is determined by the connectivity of the augmentation graph

Theorem 4.2. The U-MAE pretraining loss has the following common lower bound:

Ny
1
>|— 2
VheH, Lymae(h)> 4Li=zk;1 A7 |- € + const, (15)
where \; > --- > A, denote the eigenvalues of A. Graph con neCtiVity
According to the theory, we need MaskRato 0 035 os o7 oss

Powerful backbone
« Capable of vanilla autoencoding

* A large mask ratio
 Increase intra-class edges

Not too large mask ratio
« Fewer inter-class edges

Carl

Mask Ratio ’ ' v Mask Ratio

(a) Masked views with different mask ratio (b) The distance between (c) The relative distance be-
intra-class and inter-class tween intra-class samples
samples and inter-class samples

Empirical verification agrees with MAE’s choice of mask ratio



Experiments

« U-MAE improves MAE a lot on the linear probing task
* 9% T on CIFAR-10, 8% T on ImageNet-100, 3% T on ImageNet-1K
« no degradation on the fully finetuning task

MAE L
CIFAR-10 ImageNet-100 ImageNet-1K =
Downstream Task Method  ViT-Tiny ViT-Base ViT-Base ViT-Large ViT-Base ViT-Large “&.;:{{;'f .
- TR i e
. . MAE 59.6 61.7 61.2 64.4 554 62.2 S ;:1’3,;&}3%‘3‘
Linear Probing R R
U-MAE 68.9 70.2 67.5 72.8 58.5 65.8 : -*:f{,:-,gi‘#}q‘
PG | -l
Fine-tunin MAE 89.6 90.7 86.9 87.3 82.9 83.3 b‘g"« Tl
£ U-MAE 89.4 90.8 86.8 87.3 83.0 83.2
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U-MAE Loss
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Linear Accuracy : 61.2

« Also effective on other MIM methods, such as SimMIM, named U-SimMIM
« 7% 7T onImageNet-100

Table 2: Linear probing accuracy (%) of
U-SimMIM (ViT-Base) on ImageNet-100.

SimMIM  U-SimMIM
543 61.1

Linear Accuracy : 67.5
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Take Home Messages

« MAE ~ contrastive learning
« masking also induces positive pairs!
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« MAE still suffers from dimensional collapse
« can be resolved by U-MAE with uniformity regularization!

« Theoretical guarantees on downstream performance
 which explains the choice of large mask ratio

 Tips for designing masks
* increase intra-class edges
- avoid inter-class edges
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Thanks for Listening!

Yifei Wang (Peking University)

Contact yifei wang@pku.edu.cn for further questions
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