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Masked AutoEncoders
• Development of Self-Supervised Learning (SSL) Paradigms

• 2019-2021: Contrastive Learning (SimCLR, MoCo, BYOL, Barlow Twins, …)
• 2021-now:Masked Autoencoder (MAE) (He et al., 2021)

• MAE Objective (encoder 𝒇, decoder 𝒈, whole model 𝐡 = 𝒈 ∘ 𝒇)
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Figure from https://github.com/facebookresearch/mae
under Creative Commons License
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Mysteries of MAE
• MAE = autoencoder + masking
• Autoencoder

• As a generative model, MAE has poor reconstruction quality from masked inputs

• Masking
• MAE adopts a very large mask ratio (75%)
• Most image semantics are lost

• Our perspective
• Reconstruction is only a surrogate task for representation learning
• Question: What is the role of masking? How does it affect downstream performance?

The original figure is a personal selfie, and the processed images are
produced by MAE following https://github.com/facebookresearch/mae

https://yifeiwang77.github.io/
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MAE Implicitly Performs Contrastive Learning

MAE implicitly defines positive input pairs (as in
contrastive learning) as 2-hop neighbors in the mask graph

Main Theorem: A small MAE loss implies good alignment of positive input pairs
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Feature Collapse in MAE: Implicit Regularizations and Limitations

• MAE can avoid full feature collapse
• Fully collapsed encoder suffers from a large MAE loss

• MAE still suffers from Dimensional Collapse

• Uniformity-enhanced MAE (U-MAE): promote feature diversity with an explicit uniformity loss
• minimizes the similarities of randomly drawn negative input pairs (𝒙𝟏, 𝒙𝟏#)
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Downstream Generalization of Masked Autoencoders
• Based on this connection, we provide theoretical guarantees on downstream performance

• The minimal U-MAE loss is determined by the connectivity of the augmentation graph

According to the theory, we need
• Powerful backbone

• Capable of vanilla autoencoding

• A large mask ratio
• Increase intra-class edges

• Not too large mask ratio
• Fewer inter-class edges

Label error

Graph connectivity

Vanilla autoencoding error (no mask)

Empirical verification agrees with MAE’s choice of mask ratio
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Experiments
• U-MAE improves MAE a lot on the linear probing task

• 9% ↑ on CIFAR-10, 8% ↑ on ImageNet-100, 3% ↑ on ImageNet-1K
• no degradation on the fully finetuning task

• Also effective on other MIM methods, such as SimMIM, named U-SimMIM
• 7% ↑ on ImageNet-100
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Take Home Messages
• MAE ≈ contrastive learning

• masking also induces positive pairs!

• MAE still suffers from dimensional collapse
• can be resolved by U-MAE with uniformity regularization!

• Theoretical guarantees on downstream performance
• which explains the choice of large mask ratio

• Tips for designing masks
• increase intra-class edges (requires a large mask ratio)
• avoid inter-class edges (not too large to distort belonging classes)
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